
MG52/52E Technical Specifications

Overview

In cases of primary uplink failure, wireless WAN connectivity options, like cellular networks, can serve as a backup for ensuring connectivity.

MG52 cellular gateway is a 5G StandAlone (SA)/ Non-StandAlone (NSA) device which enables the delivery of high-speed internet access with low latency and increased capacity. The use of standalone 5G allows for advanced features like network slicing, which allows the creation of virtualized, dedicated slices of the network tailored for specific applications or services.

MG52/E is compatible with both Meraki and non-Meraki security appliances, routing, or switching devices by leveraging Ethernet and IP-based protocols. Its additional 802.3AT compatibility allows it to be positioned anywhere by using power over Ethernet (PoE), similar to any access point. This flexibility gives users the choice of an ideal physical placement to optimize signal quality.

MG Series and Meraki Cloud Management

All Meraki devices are managed via the Meraki cloud. The MG series are self-configuring and managed over the web, and can be deployed at remote locations without any assistance from end-users.

Meraki Cloud services monitor all devices 24x7 and deliver real-time alerts if any devices encounter a problem. Remote diagnostics tools enable real-time troubleshooting through any web browser. New features, enhancements and critical security patches are delivered over the web, removing the need to manually download software updates.

Features

Highlights

Management

Remote Diagnostics

- Built in 5G SA/NSA Sub6 LTE CAT20
- · Cloud managed eSIM
- · Dual SIM support
- Supports 2 separate downstream Ethernet connections
- · Small form factor
- · PoE+ or DC powered
- IP67 rating
- · Optional Patch antenna (MG52E)
- · Manageability from the Cisco Meraki dashboard
- Self-configuring Cellular Gateway
- · Automatic firmware upgrades with scheduling control
- · Extensive API support
- · Email, SMS and Mobile push notification alerts
- · Ping, traceroute, cable testing, and link failure detection with alerting
- · Remote packet capture
- · Combined event and configuration change logs with instant search
- · DM logging via Local Status Page

The MG52/E cellular gateway uses 6 to 8 megabytes a day of data for telemetry on dashboard and connection monitoring when the unit is idle. Any additional devices that are downstream of the MG52/E may increase data usage. Cisco Meraki products are cloud connected devices that report telemetry into Dashboard for network monitoring purposes. The usage will be reduced in future firmware updates.

Note: MG52/52E now features cloud managed eSIM*. This allows you to connect your device directly to a cellular network without needing to install a physical sim.

*Coming Soon: Service Provider integration in progress.

Use Cases

Note that the following use cases refer to using a Meraki MX appliance with the MG52/E as a WAN uplink. However, the use cases can also apply to non-Meraki devices.

- Antenna placement where cellular coverage is best
 - Signal strength is key for cellular performance. The MG52/E makes cellular a viable option in situations where high bandwidth or throughput is needed or locations where the MX is not necessarily the best location for a strong cellular signal. The separation of cellular antenna and MX expands cellular options for all networks, particularly for mid-range MXs deployed in a data center or medium/large branch location. The 4 x 4 DL MIMO is capable of supporting deployments that demand higher throughput capacity.
- Primary WAN
 - o In areas where wired internet services are not available or wired connectivity takes too long or is expensive, the MG52/E provides a simple, viable

option for wireless WAN connectivity.

Secondary WAN for Failover

° An MX's primary or secondary WAN interface connected to an MG52/E may use the cellular network for both primary and secondary uplinks

• Primary/Secondary WAN for SD-WAN

o An MX with an MG52/E as a primary and/or secondary WAN uplink may use the cellular network to establish VPNs for SD-WAN.

• High Availability Uplink

 The MG52/E can be used as either a primary or secondary internet uplink for MX HA topologies. Its two LAN ports allow the MXs to share access to the same cellular network.

Technical Breakdown

Physical Specifications

Models	MG52
Dimensions (w x d x h)	173 x 173 x 36.5mm
Weight (without accessories)	560g
Power Supply	12V/1A, 48-57V DC/0.35A
Power Load	16 Watt Maximum (PoE 802.3at)
Operating Temperature	-40°F to 122°F (-40°C to 50°C)
Humidity	5% to 95% non-condensing
	-22°F - 158°F
Storage and Transportation Temperature	-30°C - 70°C
Product Category	5G SA/ NSA Sub6 LTE CAT20
Maximum Wireless Data Rate (Down/Up) Passthrough	2 Gbps / 300 Mbps
Maximum Wireless Data Rate (Down/Up) NAT	1.5 Gbps/ 300 Mbps

-3

Antennas	internal	Dij
LAN Interfaces - Dedicated	1x Dedicated 2.5 GbE RJ45	1x
LAN Interfaces - Convertible	1x Convertible LAN/WAN 2.5 GbE RJ45	1x
SIM Slots	2	2
eSIM	1	1

Interfaces

Antennas

LAN Interfaces 2x 2.5 GbE

WAN Interfaces 1x 5G SA/NSA Sub6 LTE CAT20 Cellular modem

SIM Card Slot Nano (4FF)

Product Category and Certifications

5G Category 5G SA/NSA Sub 6GHz

LTE Category CAT20

Certifications PTCRB (US), RCM (ANZ, APAC), GCF (EU), IC (CA), FCC (US)

Certified Carriers AT&T, T-Mobile

Carriers leveraging GCF https://www.globalcertificationforum...f-members.html

Carrier Certification in Progress Verizon*

Beta Tested Carriers AT&T, T-Mobile, Verizon

Carrier compatibility is generally based on having compatible bands on the modem. In the open market, carriers may only require regulatory domain certifications and open market certifications, like the PTCRB and GCF, to be compatible for their network. Sometimes carriers will require additional testing before a device can be used on their network. The section Tested Carriers is based on Meraki device certifications being approved by those specific carriers. A carrier being listed above means that they have officially certified the Meraki product for their cellular network. There may be many unlisted carriers that could be

functionally compatible with Meraki devices. The list of tested certified carriers is based on the carrier validating Meraki per their network parameter requirements. If a carrier you are looking to use is not listed above, it could be that they do not require additional compliance testing for their network.

MTBF Rating

Model	MTBF at 25°C
MG52	1,663,492
MG52E	1,663,492

Accessories

Accessory SKU	Description
MA-PWR-30W-XX	Standard power adapter. Regional plugs per SKU.
MA-INJ-4	Gigabit 802.3at PoE injector
MA-ANT-C2-B	Dipole Antenna pair included with MG52E
MA-ANT-DUAL-C3	Patch Antenna pair for MG52E

Included In The Box

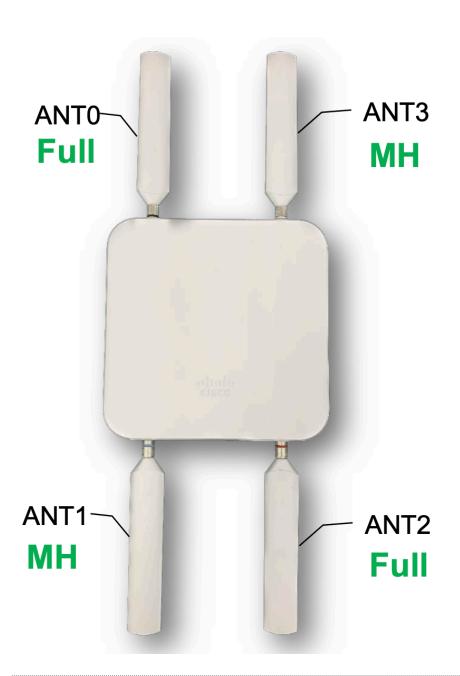
Model	Contents
MG52	1 x MG52-HW 1 x Mounting plate
	1 x MG52E-HW
MG52E	1 x Mounting plate
	4 x dipole antennas

We only support and recommend having all 4 antennas connected on the MG52/E.

Non-Meraki Antenna not supported

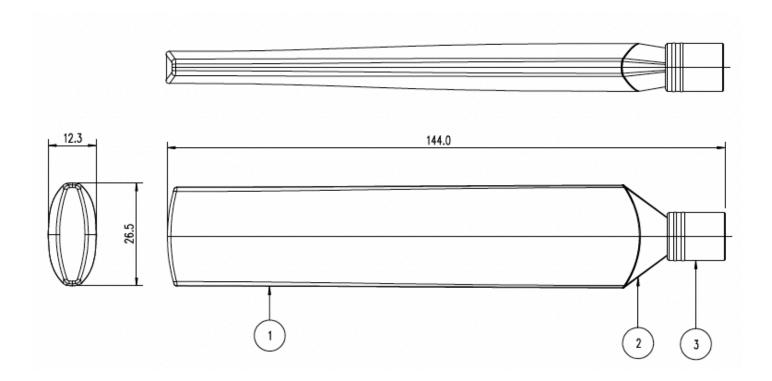
Note: Non-Meraki antennas are not supported. The socket is a reversed RP-SMA that is designed to detect the official MG smart dipole antennas and smart patch antenna. Usage of non-Meraki accessories may damage the MG and degrade performance. The Cisco Meraki antennas are designed for the maximum allowable gain without exceeding the EIRP for local regulatory domains on their supported bands.

Power Adapter vs PoE: The MG can be powered using a PoE or via a power adapter. The power adapter always takes the first preference i.e if the MG is already powered via the PoE and then the power adapter is connected, then the MG will power off and power on using the adapter as the power source. The same scenario applies when the PoE and power adapter are connected simultaneously and the power source from the adapter goes down, the MG will power off and then power on. Plugging/unplugging PoE when power adapter is connected to the MG does not have any bearing on the operation of the MG as the device will always draw power from the adapter whenever it is connected.

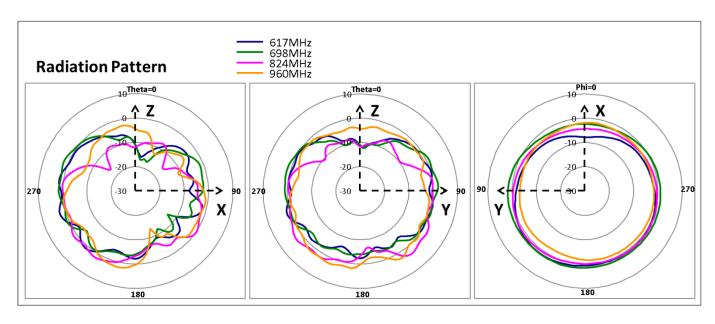

cisco Meraki

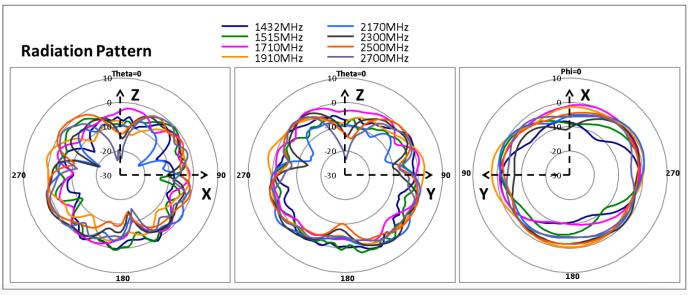
MG52E Cellular Dipole Antenna Datasheet

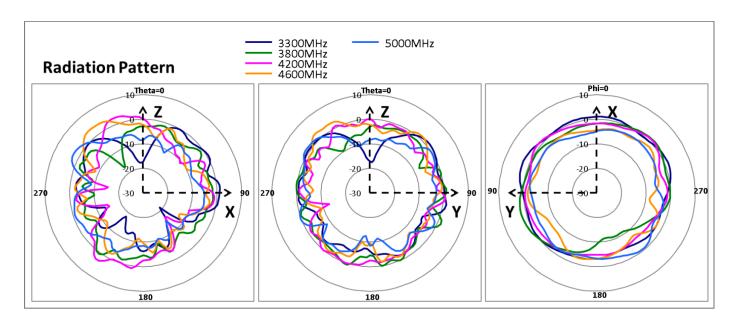
Note - Do not mix MG52E dipole antennas with other MG antennas

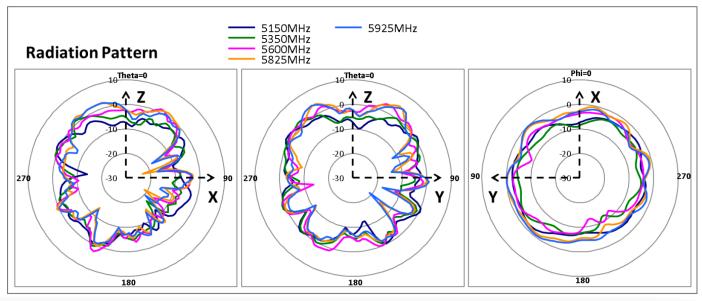

The dipole antennas (MA-ANT-C2-B) are included with the MG52E. When in use the dipoles have a spherical coverage in comparison to a patch antenna. The dipole antennas will excel at allowing users to place the MG in areas where a directional patch antenna cannot be mounted. The dipoles can be directly attached to the MG52E and require no additional mounting hardware.

Specifications

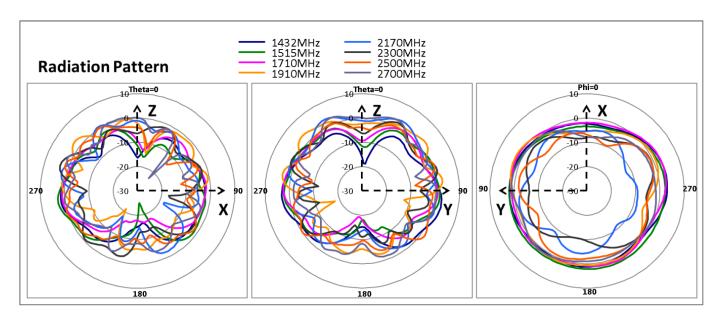

Category	Specifications
Physical and Environmental	Dimensions 144mm x 26.5mm x 12.3mm
	Material of Radiator PCB
	Material of Plastic

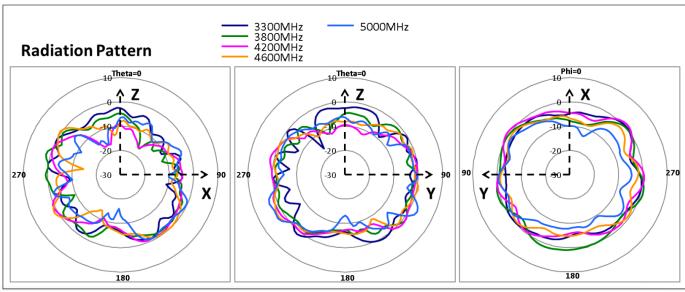

PC
Operational Temperature
-40°C to +65°C (-40°F to 149°F)
Storage Temperature
-40°C to +80°C (-40°F to 176°F)
Connector
RP-SMA (female)
1 year hardware warranty included
MA-ANT-C2-B
Certified for use with the MG52E
MA-ANT-C2-B





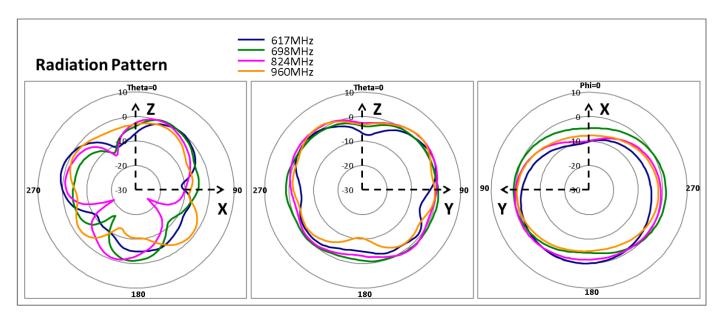
Freq. (MHz)		Peak Gain dBi	Freq. (MHz)	Eff.	Peak Gain dBi												
617	68%	2.6	704	75%	1.9	1432	43%	1.6	2110	69%	3.5	3300	65%	2.9	5150	56%	1.3
622	68%	2.6	710	74%	1.8	1445	44%	1.2	2132	69%	3.7	3400	65%	2.5	5250	54%	1.5
627	67%	2.4	716	72%	1.8	1452	45%	1.1	2140	68%	3.7	3500	63%	2.8	5350	53%	1.6
632	67%	2.2	734	70%	1.4	1463	46%	1.3	2155	67%	3.7	3600	61%	2.5	5470	55%	3.2
637	68%	1.8	740	70%	1.4	1476	50%	1.9	2170	66%	3.5	3700	58%	2.8	5600	58%	3.1
642	69%	1.8	746	69%	1.7	1486	51%	2.3	2200	65%	3.6	3800	60%	2.0	5725	59%	4.3
647	71%	2.0	751	68%	1.8	1496	51%	2.3	2300	70%	2.9	4000	58%	1.0	5750	59%	4.7
652	72%	2.1	756	66%	1.7	1503	52%	2.4	2325	68%	2.3	4100	54%	2.7	5800	56%	4.7
657	73%	2.2	777	64%	2.0	1515	51%	2.2	2350	69%	2.1	4200	49%	3.6	5825	56%	4.8
662	72%	2.2	782	66%	2.2	1710	57%	1.1	2375	71%	2.0	4300	52%	4.2	5850	58%	4.8
667	71%	2.0	787	68%	2.5	1747	58%	1.9	2400	73%	2.1	4400	53%	5.1	5875	56%	4.8
672	68%	1.2	791	69%	2.9	1785	63%	2.9	2442	76%	2.4	4500	51%	4.2	5900	55%	4.8
677	68%	1.7	806	68%	3.2	1805	63%	2.9	2484	74%	2.2	4600	52%	3.8	5925	54%	4.6
682	70%	2.0	824	69%	3.5	1840	64%	2.3	2496	72%	2.2	4700	53%	3.4			
687	72%	2.0	836	68%	3.4	1850	65%	2.6	2500	71%	2.1	4800	50%	3.3			
692	76%	2.2	849	66%	3.2	1880	66%	3.1	2525	72%	2.4	4900	50%	3.1			
698	75%	2.0	869	63%	1.9	1910	67%	3.1	2535	73%	2.6	5000	52%	2.5			
			880	63%	1.5	1920	67%	3.0	2550	74%	2.6						
			894	64%	2.0	1930	69%	3.0	2570	75%	2.4						
			900	62%	2.1	1950	70%	3.0	2600	71%	2.1						
			915	64%	2.2	1960	69%	2.9	2620	72%	2.2						
			925	65%	2.2	1980	72%	3.1	2655	70%	2.0						
			940	66%	2.1	1990	73%	3.3	2675	68%	2.2						
			960	62%	2.1				2690	67%	2.1						
									2700	67%	2.3						

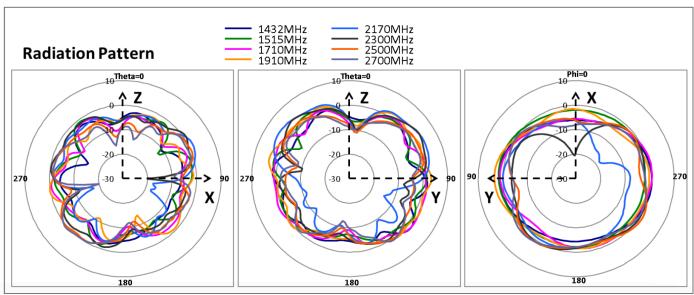


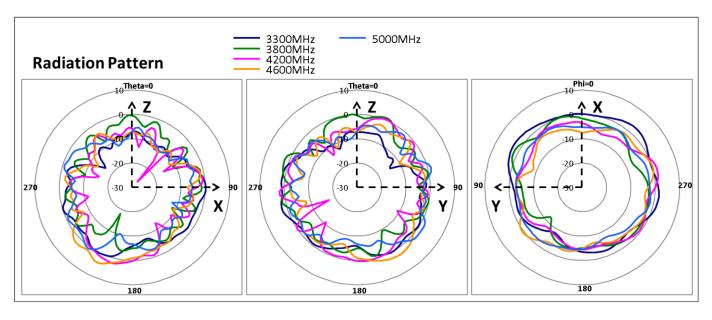


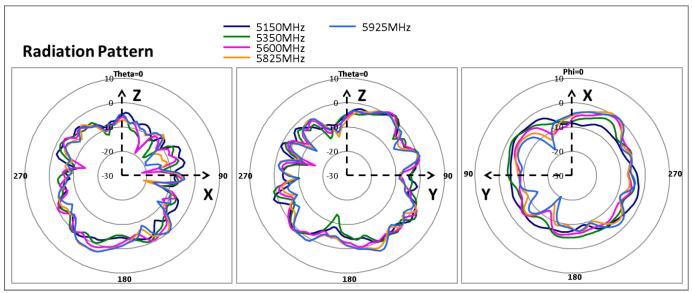
Freq. (MHz)	Eff.	Peak Gain dBi
1432	65%	3.3
1445	68%	3.4
1452	69%	3.3
1463	70%	3.1
1476	74%	3.4
1486	74%	3.4
1496	72%	3.7
1503	72%	3.6
1515	71%	3.3
1710	62%	3.0
1747	60%	2.5
1785	60%	3.8
1805	59%	4.1
1840	58%	4.2
1850	61%	4.4
1880	64%	4.7
1910	66%	4.6
1920	68%	4.6
1930	69%	4.4
1950	71%	4.3
1960	71%	4.1
1980	73%	4.0
1990	73%	3.9

Eff.	Peak Gain
	dBi
60%	2.4
57%	2.0
56%	1.9
56%	2.2
56%	2.6
56%	3.5
59%	3.6
57%	2.5
58%	2.4
59%	2.9
58%	2.8
59%	2.6
59%	2.5
58%	2.6
58%	2.7
61%	2.9
61%	3.0
63%	3.0
62%	3.0
61%	2.7
63%	3.0
63%	3.2
63%	3.2
62%	3.2
62%	3.3
	60% 57% 56% 56% 56% 56% 59% 58% 59% 59% 58% 61% 61% 63% 62% 63% 63% 63% 63% 63%


Freq. (MHz)	Eff.	Peak Gain dBi
3300	56%	2.9
3400	58%	2.8
3500	59%	2.9
3600	62%	3.2
3700	61%	3.1
3800	61%	2.6
4000	61%	2.5
4100	63%	2.8
4200	60%	2.4
4300	67%	2.7
4400	60%	2.9
4500	62%	3.3
4600	58%	3.4
4700	55%	4.1
4800	53%	4.6
4900	53%	4.4
5000	49%	3.9







Freq. (MHz)	Eff.	Peak Gain dBi	Freq. (MHz)	Eff.	Peak Gain dBi	Freq. (MHz)		Peak Gain dBi	Freq. (MHz)	Eff.	Peak Gain dBi	Fre (MF		Eff.	Peak Gain dBi	Freq (MHz		Peak Gain dBi
617	58%	1.8	704	69%	0.4	1432	46%	2.1	2110	56%	4.0	330	0 6	33%	3.3	5150	51%	1.1
622	58%	1.7	710	70%	0.5	1445	49%	1.8	2132	56%	4.1	340	0 6	62%	3.1	5250	49%	1.8
627	58%	1.3	716	70%	0.6	1452	51%	1.9	2140	56%	4.2	350	0 5	59%	2.8	5350	50%	2.2
632	58%	0.9	734	73%	0.4	1463	53%	1.9	2155	59%	4.4	360	0 5	56%	2.2	5470	51%	2.1
637	59%	0.2	740	73%	0.4	1476	59%	2.2	2170	57%	4.1	370	0 5	52%	2.4	5600	49%	2.4
642	60%	-0.2	746	73%	0.2	1486	60%	2.2	2200	61%	4.2	380	0 5	53%	1.6	5725	47%	3.6
647	61%	-0.2	751	72%	0.1	1496	59%	2.1	2300	69%	3.8	400	0 5	54%	1.4	5750	49%	4.0
652	63%	-0.1	756	70%	0.0	1503	60%	2.0	2325	67%	3.6	410	0 5	50%	1.5	5800	48%	4.0
657	63%	0.0	777	68%	0.7	1515	58%	2.0	2350	65%	3.0	420	0 4	14%	1.6	5825	49%	4.2
662	64%	0.0	782	69%	8.0	1710	62%	2.6	2375	67%	3.0	430	0 4	16%	5.2	5850	49%	4.5
667	64%	-0.1	787	70%	0.7	1747	62%	2.5	2400	69%	2.7	440	0 4	18%	6.1	5875	50%	4.6
672	65%	-0.4	791	70%	0.7	1785	63%	2.9	2442	73%	2.7	450	0 5	50%	5.4	5900	48%	4.8
677	65%	-0.3	806	67%	0.4	1805	62%	3.1	2484	71%	2.6	460	0 5	51%	4.5	5925	48%	4.7
682	65%	-0.2	824	67%	0.0	1840	62%	2.8	2496	68%	2.5	470	0 5	50%	3.6			
687	66%	-0.1	836	67%	-0.2	1850	64%	3.0	2500	67%	2.5	480	0 4	14%	3.4			
692	69%	0.3	849	64%	-0.1	1880	65%	3.1	2525	68%	2.7	490	0 4	16%	2.6			
698	69%	0.3	869	57%	1.1	1910	66%	3.8	2535	69%	2.9	500	0 4	16%	1.9			
			880	59%	1.3	1920	68%	4.0	2550	70%	2.9							
			894	63%	1.1	1930	68%	4.0	2570	69%	2.9							
			900	63%	0.6	1950	67%	3.9	2600	68%	2.8							
			915	65%	0.4	1960	66%	3.8	2620	68%	2.8							
			925	63%	0.1	1980	68%	3.8	2655	66%	2.4							
			940	62%	-0.5	1990	69%	3.8	2675	64%	2.1							
			960	59%	0.2				2690	63%	2.1							
									2700	63%	2.2							

